- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0001200001000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Fu, Jie (4)
-
Shi, Chongyang (4)
-
Bu, Yuheng (1)
-
Dorothy, Michael (1)
-
Han, Shuo (1)
-
Kulkarni, Abhishek N. (1)
-
Rahmani, Hazhar (1)
-
Udupa, Sumukha (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 6, 2026
-
Shi, Chongyang; Bu, Yuheng; Fu, Jie (, Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24))
-
Shi, Chongyang; Han, Shuo; Dorothy, Michael; Fu, Jie (, IEEE Control Systems Letters)
-
Shi, Chongyang; Kulkarni, Abhishek N.; Rahmani, Hazhar; Fu, Jie (, 2023 62nd IEEE Conference on Decision and Control (CDC))This paper studies language-based opacity enforcement in a two-player, zero-sum game on a graph. In this game, player 1 (P1) wins if he can achieve a secret temporal goal described by the language of a finite automaton, no matter what strategy the opponent player 2 (P2) selects. In addition, P1 aims to win while making its goal opaque to a passive observer with imperfect information. However, P2 colludes with the observer to reveal P1's secret whenever P2 cannot prevent P1 from achieving its goal, and therefore, opacity must be enforced against P2. We show that a winning and opacity-enforcing strategy for P1 can be computed by reducing the problem to solving a reachability game augmented with the observer's belief states. Furthermore, if such a strategy does not exist, winning for P1 must entail the price of revealing his secret to the observer. We demonstrate our game-theoretic solution of opacity-enforcement control through a small illustrative example and in a robot motion planning problem.more » « less
An official website of the United States government

Full Text Available